Package: tmle3mopttx 1.0.0
tmle3mopttx: Targeted Maximum Likelihood Estimation of the Mean under Optimal Individualized Treatment
This package estimates the optimal individualized treatment rule for the categorical treatment using Super Learner (sl3). In order to avoid nested cross-validation, it uses split-specific estimates of Q and g to estimate the rule as described by Coyle et al. In addition, it provides the Targeted Maximum Likelihood estimates of the mean performance using CV-TMLE under such estimated rules. This is an adapter package for use with the tmle3 framework and the tlverse software ecosystem for Targeted Learning.
Authors:
tmle3mopttx_1.0.0.tar.gz
tmle3mopttx_1.0.0.zip(r-4.5)tmle3mopttx_1.0.0.zip(r-4.4)tmle3mopttx_1.0.0.zip(r-4.3)
tmle3mopttx_1.0.0.tgz(r-4.4-any)tmle3mopttx_1.0.0.tgz(r-4.3-any)
tmle3mopttx_1.0.0.tar.gz(r-4.5-noble)tmle3mopttx_1.0.0.tar.gz(r-4.4-noble)
tmle3mopttx_1.0.0.tgz(r-4.4-emscripten)tmle3mopttx_1.0.0.tgz(r-4.3-emscripten)
tmle3mopttx.pdf |tmle3mopttx.html✨
tmle3mopttx/json (API)
# Install 'tmle3mopttx' in R: |
install.packages('tmle3mopttx', repos = c('https://ictml-project.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/tlverse/tmle3mopttx/issues
- data_bin - Mock data set with Binary Treatment
- data_cat - Mock data set with Categorical Treatment
- data_cat_realistic - Mock data set with Categorical Treatment and rare treatment
- data_cat_vim - Mock data set for Variable Importance Analysis with Categorical Treatment
categorical-treatmentcausal-inferenceheterogeneous-effectsmachine-learningoptimal-individualized-treatmenttargeted-learningvariable-importance
Last updated 2 years agofrom:3c0e8437af. Checks:OK: 1 NOTE: 6. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 29 2024 |
R-4.5-win | NOTE | Oct 29 2024 |
R-4.5-linux | NOTE | Oct 29 2024 |
R-4.4-win | NOTE | Oct 29 2024 |
R-4.4-mac | NOTE | Oct 29 2024 |
R-4.3-win | NOTE | Oct 29 2024 |
R-4.3-mac | NOTE | Oct 29 2024 |
Exports:create_mv_learnersLF_rulenormalize_rowsOptimal_Rule_Q_learningOptimal_Rule_RevereParam_TSM_nameQ_learningtmle3_mopttx_blip_reveretmle3_mopttx_Qtmle3_mopttx_vimtmle3_Spec_mopttx_blip_reveretmle3_Spec_mopttx_Qtmle3_Spec_mopttx_vimvals_from_factor
Dependencies:abindassertthatbackportsbase64encBBmiscbitopsbslibcachemcaretcaToolscheckmateclasscliclockcodetoolscolorspacecpp11crayondata.tabledelayeddiagramdigestdplyre1071evaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsggplot2glmnetglobalsgluegowergplotsgtablegtoolshal9001hardhathighrhmshtmltoolshtmlwidgetsigraphipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmunsellmvtnormnlmennetnumDerivorigamiparallellypillarpkgconfigplyrprettyunitspROCprodlimprogressprogressrproxypurrrR.methodsS3R.ooR.utilsR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackrecipesreshape2rlangrmarkdownROCRrpartrstackdequesassscalesshapesl3SQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetinytextmle3tzdbutf8uuidvctrsviridisLitevisNetworkwithrxfunyaml